3x^2=9(9+16)

Simple and best practice solution for 3x^2=9(9+16) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2=9(9+16) equation:



3x^2=9(9+16)
We move all terms to the left:
3x^2-(9(9+16))=0
We add all the numbers together, and all the variables
3x^2-(925)=0
We add all the numbers together, and all the variables
3x^2-925=0
a = 3; b = 0; c = -925;
Δ = b2-4ac
Δ = 02-4·3·(-925)
Δ = 11100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11100}=\sqrt{100*111}=\sqrt{100}*\sqrt{111}=10\sqrt{111}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{111}}{2*3}=\frac{0-10\sqrt{111}}{6} =-\frac{10\sqrt{111}}{6} =-\frac{5\sqrt{111}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{111}}{2*3}=\frac{0+10\sqrt{111}}{6} =\frac{10\sqrt{111}}{6} =\frac{5\sqrt{111}}{3} $

See similar equations:

| y=-3(-5)+9 | | 4n+8(n+5)=124 | | (x+2)x(x)=6400 | | 2(6b+3)=12b+7 | | 2–5x=15 | | -10x-1=-51 | | X12=-8+4x | | -10x-1=-15 | | 0.05(x-240)=270 | | 4a+4a+4=8a+5 | | 3x2=9(9+16) | | 7(m+4)+4m=83 | | 9z+2=2+9z | | 5x+21+14+90=180 | | 18y-15=5+18y | | 63=9(u+3) | | P=12-5x-6 | | 7b-5=2(6b-5) | | 5x/6-3x/8=11/24 | | -5y-7=-10y+8 | | 18-2u=2 | | 51+90=x | | 2(2x+3)=6x-4 | | k÷ 38= 6 | | 5x+21+14=180 | | 5x-12+4x+x=180 | | 11=x=30 | | 12=6(n-7) | | 4(1+4n)=84 | | 5x-12+4x=180 | | 110+25=x | | 5b+3=83 |

Equations solver categories